A posteriori error control for the binary Mumford-Shah model
نویسندگان
چکیده
The binary Mumford-Shah model is a widespread tool for image segmentation and can be considered as a basic model in shape optimization with a broad range of applications in computer vision, ranging from basic segmentation and labeling to object reconstruction. This paper presents robust a posteriori error estimates for a natural error quantity, namely the area of the non properly segmented region. To this end, a suitable strictly convex and non-constrained relaxation of the originally non-convex functional is investigated and Repin’s functional approach for a posteriori error estimation is used to control the numerical error for the relaxed problem in the L-norm. In combination with a suitable cut out argument, a fully practical estimate for the area mismatch is derived. This estimate is incorporated in an adaptive meshing strategy. Two different adaptive primal-dual finite element schemes, and the most frequently used finite difference discretization are investigated and compared. Numerical experiments show qualitative and quantitative properties of the estimates and demonstrate their usefulness in practical applications.
منابع مشابه
Equivalent a posteriori error estimates for spectral element solutions of constrained optimal control problem in one dimension
In this paper, we study spectral element approximation for a constrained optimal control problem in one dimension. The equivalent a posteriori error estimators are derived for the control, the state and the adjoint state approximation. Such estimators can be used to construct adaptive spectral elements for the control problems.
متن کاملOn the Statistical Interpretation of the Piecewise Smooth Mumford-Shah Functional
In region-based image segmentation, two models dominate the field: the Mumford-Shah functional and statistical approaches based on Bayesian inference. Whereas the latter allow for numerous ways to describe the statistics of intensities in regions, the first includes spatially smooth approximations. In this paper, we show that the piecewise smooth Mumford-Shah functional is a first order approxi...
متن کاملRobust Edge Detection Using Mumford-Shah Model and Binary Level Set Method
A new approximation of the Mumford-Shah model is proposed for edge detection, which could handle open-ended curves and closed curves as well. The essential idea is to treat the curves by narrow regions, and use a sharp interface technique to solve the approximate Mumford-Shah model. A fast algorithm based on the augmented Lagrangian method is developed. Numerical results show that the proposed ...
متن کاملA Fast Edge Detection Algorithm Using Binary Labels
Edge detection (for both open and closed edges) from real images is a challenging problem. Developing fast algorithms with good accuracy and stability for noisy images is difficult yet and in demand. In this work, we present a variational model which is related to the well-known Mumford-Shah functional and design fast numerical methods to solve this new model through a binary labeling processin...
متن کاملIncorporating Patch Subspace Model in Mumford-Shah Type Active Contours
In this paper, we propose a unified energy minimization model for segmentation of non-smooth image structures, e.g., textures, based on Mumford-Shah functional and linear patch model. We consider that image patches of a non-smooth image structure can be modeled by a patch subspace, and image patches of different non-smooth image structures belong to different patch subspaces, which leads to a c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Math. Comput.
دوره 86 شماره
صفحات -
تاریخ انتشار 2017